Matrices and Determinants

A rectangular array of 'mn' numbers in the form of m rows and n columns is called matrix of order
m by n written as m x n matrix
      

Equality of matrices:
                                   
Two matrices A and B are equal if they are of same order and all corresponding elements are equal. 


Addition of Matrices:

A \pm B = \left[ {{a_{ij}}} \right]\; \pm \;\left[ {{b_{ij}}} \right]   
          
 For example
  \left[ {\;\begin{array}{*{20}{c}}  1&{ - 2}\\  3&{\;\;4}\\  5&{ - 3}  \end{array}\;} \right]\;\; + \;\;\left[ {\begin{array}{*{20}{c}}  {\;\;2}&{\;1}\\  { - 1}&{\;3}\\  {\;\;4}&{\;2}  \end{array}\;} \right]\;\; = \;\left[ {\;\begin{array}{*{20}{c}}  3&{\; - 1}\\  2&{\;\;\;7}\\  9&{\; - 1}  \end{array}\;} \right]\;   

Multiplication by a scalar:
                              
If we multiply a matrix A = [{a_{ij}}] by \lambda , we get the matrix \lambda A = [\lambda {a_{ij}}].\;
       

Example

4\left[ {\;\begin{array}{*{20}{c}}  1&3&{\;\;2}\\  2&1&{ - 1}  \end{array}\;} \right]\;\; = \;\;\left[ {\;\begin{array}{*{20}{c}}  4&{12}&{\;\;8}\\  8&4&{ - 4}  \end{array}\;} \right]
Multiplication Of Matrices:

A = \left[ {\begin{array}{*{20}{c}}  {{a_1}}&{{a_2}}&{{a_3}}\\  {{b_1}}&{{b_2}}&{{b_3}}\\  {{c_1}}&{{c_2}}&{{c_3}}  \end{array}} \right] \,\,\,\,\,\, B = \left[ {\begin{array}{*{20}{c}}  {{\alpha _1}}&{{\beta _1}}\\  {{\alpha _1}}&{{\beta _2}}\\  {{\alpha _3}}&{{\beta _3}}  \end{array}} \right]
To obtain the element {a_{11}} of AB, we multiply {R_1} of A with {C_1} of B :
To obtain the element {a_{12}} of AB, we multiply {R_1} of A with {C_2} of B:
To obtain the element {a_{21}} of AB, we multiply {R_2} of A with {C_1} of B:
Proceeding this way, we obtain all the elements of AB.

If A is or order m \times n, and B of order n \times p, then to obtain the element {a_{ij}} in AB, we multiply {R_i} in A with {C_j} in B:

 
 Transpose
                  
 
A = \left[ {\;\begin{array}{*{20}{c}}  2&4\\  1&1\\  3&7  \end{array}\;} \right] \,\,\,\,\,\,\,  \Rightarrow  \,\,\,\, {A^T} = \left[ {\;\begin{array}{*{20}{c}}  2&1&3\\  4&1&7  \end{array}\;} \right]      
Note:-     ,
                 
                            

Determinant of Matrices:
\Delta  = \left| {\;\begin{array}{*{20}{c}}  a\,\,\,\,b\\  c\,\,\,\,d  \end{array}\;} \right|  
\Delta  = ad - bc.

 \Delta  = \left| {\;\begin{array}{*{20}{c}}  {{a_1}}\,\,\,\,{{a_2}}\,\,\,\,{{a_3}}\\  {{b_1}}\,\,\,\,{{b_2}}\,\,\,\,{{b_3}}\\  {{c_1}}\,\,\,\,{{c_2}}\,\,\,\,{{c_3}}  \end{array}\;} \right|     

 = {a_1}\left| {\begin{array}{*{20}{c}}  {{b_2}}&{{b_3}}\\  {{c_2}}&{{c_3}}  \end{array}} \right| - {a_2}\left| {\begin{array}{*{20}{c}}  {{b_1}}&{{b_3}}\\  {{c_1}}&{{c_3}}  \end{array}} \right| + {a_3}\left| {\begin{array}{*{20}{c}}  {{b_1}}&{{b_2}}\\  {{c_1}}&{{c_2}}  \end{array}} \right|   
 = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)   
   

{a_{ij}} that element which is in the {i^{{\rm{th}}}} row and {j^{{\rm{th}}}} column
Each {a_{ij}} will have its corresponding co-factor {C_{ij}} 
{C_{ij}} = {\left( { - 1} \right)^{i + j}}{M_{ij}}   
   is called minor of  {a_{ij}}   which is calculated by taking the determinant of matrix formed by
eleminating the 'i' row and 'j' column.
For example minor of    is     
Properties of determinant:
 
  • The value of determinant is not changed when rows are changed into columns and columns into rows.  
  • If any two rows or columns of a determinant are interchanged, the sign of the determinant changes but its magnitude remains the same
  • A determinant having two rows or two columns identical has the value zero
  • Multiplying all the elements of a row (or column) by a scalar (a real number) is equivalent to multiplying the determinant by that scalar
  • A determinant can be split into a sum of two determinants along any row or column 
Inverse of a square matrix  :
          Order two  
                                     
         Order three  
A = \left[ {\;\begin{array}{*{20}{c}}  {{a_1}}&{{a_2}}&{{a_3}}\\  {{a_4}}&{{a_5}}&{{a_6}}\\  {{a_7}}&{{a_8}}&{{a_9}}  \end{array}\;} \right]  with corresponding co-factors{C_1},{C_2}\ldots {C_9}   


\widetilde A = \left[ {\;\begin{array}{*{20}{c}}  {{C_1}}&{{C_4}}&{{C_7}}\\  {{C_2}}&{{C_5}}&{{C_8}}\\  {{C_3}}&{{C_6}}&{{C_9}}  \end{array}\;} \right]   Adjoint of A=Transpose of cofactor matrix  
                 
   
Note:
              
Diagonal matrix                     All non-diagonal elements are zero. 
\left[ {\;\begin{array}{*{20}{c}}  1&0&0\\  0&{ - 1}&0\\  0&0&2  \end{array}\;} \right]   
Symmetric matrix:
     i.e    
 
Skew Symmetric Matrix:
  i.e   
Main diagonal elements are zero 
  

Solutions of simultaneous linear equations:
           1.Cramer's rule:
                    Consider a system
  
                 
                                              

  •         consistent and unique solution
  •    and at least one of  is non zero-Inconsistent and no solution  
  •   infinitely  many solution
         2.Matrix method:
 

                                                                                  
 
             

,

No comments:

Post a Comment