Probability

Some Definition:
                             
       Elementary Event(E):If a random  experiment is performed then each of its outcomes is known as  elementary event.
      
        Sample Space(S):The set of all possible outcomes of a random experiment.
      
       Compound Event:A subset of sample space if it is disjoint union of single subsets of the sample space.
        Mutually Exclusive Events:Occurrence of one event prevent the occurrence  of others.

         Independent Events: Occurrence of  is not affected by occurrence of  others.

Probability:

           
                                                                    n = total elementary events
                                                                                m=events favorable to an event A

  


Addition  and multiplication rules of probability:
                    Addition Theorem:
             
                    Multiplication Theorem :

                       
                  

Conditional probability:

                : Probability of occurrence of A under condition that B has already occurred.

 Baye's Rule:

 
P\left( {{E_i}/A} \right) = \dfrac{{P\left( {{\rm{Darkly\, shaded \, region\,}}} \right)}}{{P\left( {{\rm{Total \,shaded \, region}}} \right)}} 
                      = \dfrac{{P\left( {{\rm{A}} \cap {E_i}} \right)}}{{\sum\limits_{j{\rm{  = }}\,{\rm{1}}}^n {P\left( {A \cap {E_j}} \right)} }}  
                      = \dfrac{{P\left( {{E_i}} \right)P\left( {A/{E_i}} \right)}}{{\sum\limits_{j{\rm{  = }}\,{\rm{1}}}^n {P\left( {{E_j}} \right)P\left( {A/{E_j}} \right)} }}  

{P\left( {{E_i}/A} \right) = \dfrac{{P\left( {{E_i}} \right)P\left( {A/{E_i}} \right)}}{{\sum\limits_{j = 1}^n {P\left( {{E_j}} \right)P\left( {A/{E_j}} \right)} }}}  

No comments:

Post a Comment