Functions

Domain:
The  domain of y=f(x) is set of all real x for which f(x) is defined(real).

Range(co-domain):
The range of y=f(x) is collection of all outputs f(x) corresponding to each real number in the domain.

MAPPING OF FUNCTION

Maps are a convenient way to visualise functions, or more generally, the association between two sets.
 A map relates one set to another using some rule. 
For example,  y = f(x) = {x^2},   A = \{1, 2, 3, 4\}, B = \{1,4,9,16\}
figure showing mapping
  Domain                            Range

Kinds of function
  1. one-one-onto  bijective(injective & surjective)
  2. one-one-into   only injective not surjective
  3. many-one-onto  not injective only surjective
  4. many-one-into  neither injective nor surjective

one-one mapping:If f(x)=f(y) => x=y i.e for  different elements of A has different images in B.otherwise many to one

into function:For    if there exists an element in B having no pre image in A.

onto function: For  such that each element of B is the f image of at least one element in A
  
absolute value function


exponential function



Domain = real number, Range ]  [

logarithmic function



Polynomial function

n is non negative integer

characteristics function


used in probability theory

signum function



greatest integer function

if  
then


where  is greatest integer function


similarly least integer function

composite function

Let us consider two function   and  

we define  such that


Trigonometric functions

There are six basic trigonometric functions

sine : 

cosine : 

tangent :  

cotangent : 

secant : 

cosecant : 


properties of function

Even and Odd Functions

A function is even if f(x) = f( - x)

graph of a square function

A function is odd if f(x) =  - f( - x)

graph of a cubic function

Periodic Functions

A function f(x) is said to be periodic if


T is the period

A function f(x) is increasing if f  increases as x  increases.

A function f(x) is decreasing if f decreases as x increases.

 Inverse of Function

The inverse of a function f(x) is a function g(x)  such that if f maps an element ‘a’ to an element ‘b’, g  maps ‘b’ to ‘a’.
In more formal terms, g(f(x)) = x. That is,  g  reverses the action of  f  on x.
For a function to be invertible, it should be one-one and onto (also called a bijective function).
e.g.
figure showing mapping

No comments:

Post a Comment