Trigonometry

Trigonometric functions :

          \begin{array}{l}  \sin x = \dfrac{p}{h} \,\,\,\,\,\,\,\, {\rm{cosec}}\;x = \dfrac{h}{p}\\  \cos x = \dfrac{b}{h} \,\,\,\,\,\,\,\, {\rm{sec}}\;x = \dfrac{h}{b}\\  \tan x = \dfrac{p}{b} \,\,\,\,\,\,\,\,\cot \;x = \dfrac{b}{p}  \end{array}


  
 Aid to memory:                           AFTER SCHOOL TO CINEMA
Steps of finding the value when (e.g ) :
  1.  Express   x   as    where     (e.g )
  2. If  n  is  even  function remains same.If  n  is odd  Sin becomes cos and  vice versa  tan becomes cot & vice versa , sec becomes cosec & vice versa  (e.g n is odd so )
  3. Find whether function is positive or negative in above fig showing four regions(e.g      is in 2nd quadrant(360+120) so + )
  4. find the value of function in step-2 and use step-3 to get answer(e.g    
Basic relations between these functions:
                       (A )Sum
{\sin ^2}x + {\cos ^2}x = 1
1 + {\tan ^2}x = {\sec ^2}x 
1 + {\cot ^2}x = {\rm{cose}}{{\rm{c}}^2}x 
                       (B)Product
  

 

Periodicity and graphs:


Formulae involving multiple and sub-multiple angles:
1.
 \sin \left( {A \pm B} \right) = \sin A\cos B \pm \cos A\sin B                                              
\cos (A \pm B) = \cos A\cos B \mp \sin A\sin B              NOTE:  SIGN
\tan (A \pm B) = \dfrac{{\tan A \pm \tan B}}{{1 \mp \tan A\tan B}}                     


2.By putting A in place of B in eq(1)
\sin 2A = 2\sin A\cos A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}                              
 
\cos 2A = {\cos ^2}A - {\sin ^2}A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}} = 2{\cos ^2}A - 1 = 1 - 2{\sin ^2}A  
                                                           


3.By putting 2A and A in place of  A & B  in eq(1) and applying eq(2)
\sin 3A = 3\sin A - 4{\sin ^3}A                                      
\cos 3A = 4{\cos ^3}A - 3\cos A                                     
\tan 3A = \dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}                                            
 4.By putting A/2 in place A in eq (2)   
\sin \dfrac{A}{2} = \sqrt {\dfrac{{1 - \cos A}}{2}}  
                          
 \cos \dfrac{A}{2} = \sqrt {\dfrac{{1 + \cos A}}{2}}
                  
\tan \dfrac{A}{2} = \sqrt {\dfrac{{1 - \cos A}}{{1 + \cos A}}}  = \dfrac{{1 - \cos A}}{{\sin A}} = \dfrac{{\sin A}}{{1 + \cos A}} 
5.Taking A+B=C  &  A-B=D in eq(1)
\sin C + \sin D = 2\sin \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2} 
\sin C - \sin D = 2\cos \dfrac{{C + D}}{2}\;\sin \dfrac{{C - D}}{2} 
\cos C + \cos D = 2\cos \dfrac{{C + D}}{2}\;\cos \dfrac{{C - D}}{2} 
\cos C - \cos D = 2\sin \dfrac{{C + D}}{2}\;\sin \dfrac{{D - C}}{2}  
General solution of trigonometric equations:

         
                          

                     

Relations between sides and angles of a triangle:

 

Sine Rule:
\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} 
{\Delta  = \dfrac{1}{2}ab\sin C = \dfrac{1}{2}bc\sin A = \dfrac{1}{2}ca\sin B\;} 
Cosine Rule:

{a^2} = {b^2} + {c^2} - 2bc\;\cos A 
{b^2} = {c^2} + {a^2} - 2ac\;\cos B 
{c^2} = {a^2} + {b^2} - 2ab\;\cos C 
Projection Rule:
 
 
 
half-angle formula:


 

 



Area of a triangle:

Area      
R = radius of circumcircle
r = radius of incircle          

Inverse trigonometric functions (principal value only):
     
f(x) = {\sin ^{ - 1}}x,\;[ - 1,\;1] \to \left[ {\dfrac{{ - \pi }}{2},\;\dfrac{\pi }{2}} \right] 
 f(x) = {\cos ^{ - 1}}x,\;[ - 1,\;1] \to [0,\;\pi ] 
f(x) = {\tan ^{ - 1}}x, \, \mathbb{R}\left( {\dfrac{{ - \pi }}{2},\;\dfrac{\pi }{2}} \right) 
f(x) = {\cot ^{ - 1}}x,\; \mathbb{R}\to (0,\;\pi ) 
f(x) = {\sec ^{ - 1}}x,\;\left( { - \infty ,\; - 1} \right] \cup \left[ {1,\;\infty } \right) \to [0,\;\pi ]\backslash \left\{ {\pi /2} \right\} 
f(x) = {\rm{cose}}{{\rm{c}}^{ - 1}}\,x,\;\left( { - \infty ,\; - 1} \right]\; \cup \left[ {1,\;\infty } \right) \to \left[ {\dfrac{{ - \pi }}{2},\;\dfrac{\pi }{2}} \right]\;\backslash \;\left\{ 0 \right\} 

Properties:
{{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x = \dfrac{\pi }{2}} 
{\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2} for all x \in\mathbb{R}  
{\sec ^{ - 1}}x + {\rm{cose}}{{\rm{c}}^{ - 1}}x = \dfrac{\pi }{2} for all x \in \;\left( { - \infty , - 1} \right] \cup \left[ {1,\;\infty } \right) 



1 comment:

  1. Trigonometry often feels complex, but your approach makes it much more digestible. I believe understanding these relationships is foundational to mastering higher-level math. For anyone struggling with similar topics, I'd highly recommend seeking math tuition to ensure a deeper grasp of the subject. Personalized guidance can make a huge difference in improving one's confidence and skills in mathematics.

    ReplyDelete