Vectors

Scalars only magnitude.Ex: Distance,Temperature, speed, mass

Vectors both magnitude and direction. The magnitude of   is written  .Ex: displacement, velocity, acceleration and force

Unit Vector: only give direction i.e vector with magnitude "one".
Ex:    (unit vector)

Note:  are unit vectors along x,y,z axis.
Vectors are equal if they have the same magnitude and direction.
The negative of a vector has the same magnitude but opposite direction.

Scalar multiplication:Multiplication or division of a vector by a scalar results in a vector for which
(a)only the magnitude changes if the scalar is positive
(b)the magnitude changes and the direction is reversed if the scalar is negative.

The projections of a vector along the axes of a rectangular co-ordinate system are called the components of the vector.

Similarly for 3D i.e for x,y,z axis.

Addition of vectors:
1.To add vectors by components 
     
     Find  and .
     Then     and 

2.Triangle Law:   and  

 is angle between A and B vector i.e by how much angle the vector B rotates/shift from the direction of vector A in anti-clockwise direction.
 is angle between A and R vector
3.Parallelogram: Same formula as triangle law

Subtraction of a vector is defined by adding a negative vector.

Dot Product:
       Given A , B ,   are known
or
     If A,B are expressed in compent form

Note:      A,B are magnitude

                 
Geometrical interpretations: = Projection of A on B

Cross products:
   where  is the normal to the plane containing A                               & B with direction defined by thumb rule or                                      screw rule


OR

Note:
                 \begin{align}
\mathbf{i}&=\mathbf{j}\times\mathbf{k}\\
\mathbf{j}&=\mathbf{k}\times\mathbf{i}\\
\mathbf{k}&=\mathbf{i}\times\mathbf{j}
\end{align}         \begin{align}
\mathbf{k\times j}=&-\mathbf{i}\\
\mathbf{i\times k}=&-\mathbf{j}\\
\mathbf{j\times i}=&-\mathbf{k}
\end{align}         \mathbf{i}\times\mathbf{i}=\mathbf{j}\times\mathbf{j}=\mathbf{k}\times\mathbf{k}=\mathbf{0}
Geometrical interpretations:
The magnitude of the cross product can be interpreted as the positive area of the parallelogram having a and b as sides
A = \left\| \mathbf{a} \times \mathbf{b} \right\| = \left\| \mathbf{a} \right\| \left\| \mathbf{b} \right\| \sin \theta. \,\!         
Similarly Area of triangle is half of cross product.
Scalar triple products:
The scalar triple product of three vectors A, B, and C is denoted [A,B,C] and defined by

Geometric interpretation:


     Geometrically, the scalar triple product
 \mathbf{a}\cdot(\mathbf{b}\times \mathbf{c})
is the (signed) volume of the parallelepiped
\mathbf{a}\cdot(\mathbf{b}\times \mathbf{c}) = \det \begin{bmatrix}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3 \\
\end{bmatrix}.

No comments:

Post a Comment