Limits , Continuity and Differentiability

A limit is the value that a function or sequence "approaches" as the input or index approaches some value
Suppose f is a real-valued function and c is a real number. The expression
 \lim_{x \to c}f(x) = L
means that f(x) can be made to be as close to L as desired by making x sufficiently close to c. In that case, the above equation can be read as "the limit of f of x, as x approaches c, is L".

For example      

Left hand and right hand limit of a function 

 \mathop {\lim }\limits_{x \to 0} \dfrac{1}{x} = \infty  

x can ‘approach’ or tends to '0' in two ways, either from the left hand side or from the right hand side:


x \to {0^ - }:approach is from left side of 0


x \to {0^ + }: approach is from right side of 0 
               

e.g.              
Sgn is signum function

The limit of f(x) at x = a is said to exist if the function approaches the same value from both sides i.e.

  
&
 


Limits of the form \dfrac{0}{0},\dfrac{\infty }{\infty },\infty  - \infty ,\infty  \times 0,{1^\infty },{0^\infty } are called indeterminate forms(limit may or mayn't exist).  Such forms need to be reduced into determinate forms for which the limit can be determined.

Algebra of Limits

Let \mathop {\lim }\limits_{x \to a} f\left( x \right) = l and \mathop {\lim }\limits_{x \to a} g\left( x \right) = m.



\mathop {\lim }\limits_{x \to a} \left\{ {f\left( x \right) \pm g\left( x \right)} \right\} = \left\{ {\mathop {\lim }\limits_{x \to a} f\left( x \right)} \right\} \pm \left\{ {\mathop {\lim }\limits_{x \to a} g\left( x \right)} \right\} = l \pm m
\mathop {\lim }\limits_{x \to a} \left\{ {f\left( x \right) \cdot g\left( x \right)} \right\} = \left\{ {\mathop {\lim }\limits_{x \to a} f\left( x \right)} \right\} \cdot \left\{ {\mathop {\lim }\limits_{x \to a} g\left( x \right)} \right\} = l \cdot m

\mathop {\lim }\limits_{x \to a} \left\{ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right\} = \dfrac{{\left\{ {\mathop {\lim }\limits_{x \to a} f\left( x \right)} \right\}}}{{\left\{ {\mathop {\lim }\limits_{x \to a} g\left( x \right)} \right\}}} = \dfrac{l}{m}{\rm{if}}m \ne 0
\mathop {\lim }\limits_{x \to a} \left\{ {Kf\left( x \right)} \right\} = K\left\{ {\mathop {\lim }\limits_{x \to a} f\left( x \right)} \right\} = Kl
\mathop {\lim }\limits_{x \to a} {\left( {f\left( x \right)} \right)^{g\left( x \right)}} = {\left( {\mathop {\lim }\limits_{x \to a} f\left( x \right)} \right)^{\left( {\mathop {\lim }\limits_{x \to a} g\left( x \right)} \right)}} = {l^m},
\mathop {\lim }\limits_{x \to a} f\left( {g\left( x \right)} \right) = f\left( {\mathop {\lim }\limits_{x \to a} g\left( x \right)} \right) = f\left( m \right)
\mathop {\lim }\limits_{x \to a} \left| {f\left( x \right)} \right| = \left| {\mathop {\lim }\limits_{x \to a} f\left( x \right)} \right| = \left| l \right|
then 

Sandwich theorem:
If   \mathop {\lim }\limits_{x \to a} g\left( x \right) = \mathop {\lim }\limits_{x \to a} h\left( x \right) = l,  and a function f(x) is such that

g\left( x \right) \le f\left( x \right) \le h\left( x \right) 
for all x in neighborhood of a then
\mathop {\lim }\limits_{x \to a} f\left( x \right) = l

Existence of limit at x = a   implies LHL = RHL Continuity of f(x) at x = a  implies LHL = RHL = f(a) 


Methods for Evaluation of Limits


(A) DIRECT SUBSTITUTION:
 
(B) FACTORIZATION:
\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - 3x + 2}}{{{x^2} - 4}} = \mathop {\lim }\limits_{x \to 2} \dfrac{{(x - 1)(x - 2)}}{{(x - 1)(x + 2)}} = \mathop {\lim }\limits_{x \to 2} \dfrac{{x - 1}}{{x + 2}} = \dfrac{1}{4}  
(C) RATIONALIZATION:
 \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {{x^2} + 1}  - 1}}{{\sqrt {{x^2} + 16}  - 4}}\left( {{\rm{of\, \,the\, \,indeterminate\,\, form \,\,}}\dfrac{{\rm{0}}}{{\rm{0}}}} \right) 
\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {{x^2} + 1}  - 1}}{{\sqrt {{x^2} + 16}  - 4}} \times \dfrac{{\sqrt {{x^2} + 1}  + 1}}{{\sqrt {{x^2} + 1}  + 4}} \times \dfrac{{\sqrt {{x^2} + 16}  + 4}}{{\sqrt {{x^2} + 16}  + 4}} 
\mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2}}}{{{x^2}}} \times \dfrac{{\sqrt {{x^2} + 16}  + 4}}{1} 
 = \dfrac{8}{2} = 4
(D) REDUCTION TO STANDARD FORMS:
(i)  
(ii)                              

(iii)                   
(iv)                        
(v)   
(vi)                   , 
(vii)                              , 
(viii)  
(ix)  

(E)Using L'Hospital rule:
If f(x) and g(x) are continuous and differentiable at x=a,
&  or    then
 
 
we can repeat this process till limit is evaluated

(F)Evaluation of left hand and right hand limit:
RHL of
      at x=4
 
 





 

similarly for LHL evaluation is replaced by where






Continuity of a function:
A function f(x) is said to be continuous at x=a if   

 

i.e LHL=RHL=value of function at x=a




Differentiability of a function at a point:

f(x) ,defined in (a,b), is said to be differentiable at x=c where  

iff  exists finitely


i.e.




LEFT HAND DERIVATIVE = RIGHT HAND DERIVATIVE
Relationship between continuity and differentiability


 If a function is differentiable at a point , it is continuous at that point.But the converse is not necessarily true.


No comments:

Post a Comment