Complex Numbers

 
Natural no.(N) ,Whole no.(W) , Integers(Z or I) , Rational(Q) & Irrational no.(Q'), Real no(R).

Imaginary Number is square root of a negative real number e.g. 

 

which is imaginary.so the quantity  is denoted by  .Thus

           if n is even
          if n i odd

Complex Number:   = Re z + i Im z

Algebra of complex numbers:

  •   
  •               Addition
  •            Multiplication
  •                                                  Conjugation

Polar representation:
                                                                                                                             
                       
 
Modulus of a complex number:


Properties of modulus:

 
Hint: The above property can be remembered by thinking as two sides of a triangle so that third side which is resultant of   is always less than equal to sum of individual side and always greater than equal to difference of two sides which is basic theorem of triangle.  

Principal argument: 

 
The value of  where    is called principle argument.

Euler's notation:

 

cube roots of unity: 
                                                                                                                                                                        
properties of  :

 
       if 'r' is not multiple of '3'
       if 'r' is multiple of '3' 
                                       
Geometrical interpretation:

       circumference of a circle with center and radius a

      Circle if    
                           perpendicular bisector if              

Logarithm of complex no.
                              

   if we put n=0 we get principle value of log z.

No comments:

Post a Comment