Sequences and Series

If        is a sequence, then the expression is a series.
Those sequences whose terms follow certain patterns are called progressions.

Arithmetic Progression(A.P):
                             
   for all            

If     is the first term and    the  common difference of an A.P.,then its    term  is


Sum of  'n' terms  of an A.P. :

 
        where  l  =  last term  =        

Geometric Progression(G.P.) :
  
     for all       

If    is  the  first  term  and    is  common ratio then its   term  is  
   
    
Sum of 'n' terms of an G.P. :
                   For     
                         For  


Infinite Geometric Series Sum

             For        ,          

harmonic progressions(H.P.) :
   is a Harmonic Progression if the sequence     is an A,P,

arithmetic(A), geometric(G) and harmonic means(H)  :
        Two positive numbers  a  and  b
    
       Similarly for  n  arithmetic / Geometric  mean  between a  and  b  find  d /  r as
     
      So nth arithmetic / geometric mean is

   

     Notes:
  •  
  •  
  •    have  'a'  and  'b'  as roots.             

Arithmetic-Geometric Progression(AGP) :
                     
    Sum of n terms of AGP : 

   


   Sum of infinite AGP :
           
Notes:
      

       
    

No comments:

Post a Comment